Variational Bayesian causal connectivity analysis for fMRI
نویسندگان
چکیده
منابع مشابه
Variational Bayesian causal connectivity analysis for fMRI
The ability to accurately estimate effective connectivity among brain regions from neuroimaging data could help answering many open questions in neuroscience. We propose a method which uses causality to obtain a measure of effective connectivity from fMRI data. The method uses a vector autoregressive model for the latent variables describing neuronal activity in combination with a linear observ...
متن کاملVariational Bayesian inference for fMRI time series.
We describe a Bayesian estimation and inference procedure for fMRI time series based on the use of General Linear Models with Autoregressive (AR) error processes. We make use of the Variational Bayesian (VB) framework which approximates the true posterior density with a factorised density. The fidelity of this approximation is verified via Gibbs sampling. The VB approach provides a natural exte...
متن کاملConnectivity-based neurofeedback: Dynamic causal modeling for real-time fMRI☆
Neurofeedback based on real-time fMRI is an emerging technique that can be used to train voluntary control of brain activity. Such brain training has been shown to lead to behavioral effects that are specific to the functional role of the targeted brain area. However, real-time fMRI-based neurofeedback so far was limited to mainly training localized brain activity within a region of interest. H...
متن کاملFunctional connectivity modelling in fMRI based on causal networks
We apply the principle of causal networks to develop a new tool for connectivity analysis in functional Magnetic Resonance Imaging (fMRI). The connections between active brain regions are modelled as causal relationships in a causal network. The causal networks are based on the notion of d-separation in a graph-theoretic context or, equivalently, on the notion of conditional independence in a s...
متن کاملIdentification of mild cognitive impairment disease using brain functional connectivity and graph analysis in fMRI data
Background: Early diagnosis of patients in the early stages of Alzheimer's, known as mild cognitive impairment, is of great importance in the treatment of this disease. If a patient can be diagnosed at this stage, it is possible to treat or delay Alzheimer's disease. Resting-state functional magnetic resonance imaging (fMRI) is very common in the process of diagnosing Alzheimer's disease. In th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Neuroinformatics
سال: 2014
ISSN: 1662-5196
DOI: 10.3389/fninf.2014.00045